
 

Int. J. of Applied Mechanics and Engineering, 2021, vol.26, No.3, pp.163-176 
DOI: 10.2478/ijame-2021-0042 
 
NEW ITERATIVE METHOD OF SOLVING NONLINEAR EQUATIONS IN 

FLUID MECHANICS 
 

M. PALIIVETS* 
Department of Information Technology in the Agro-Industrial Complex 

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA 
E-mail: paliivetsmax@rambler.ru, paliivets@rgau-msha.ru 

 
E. ANDREEV 

Department of Agricultural Construction and Real Estate Expertise,  
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA 

 
A. BAKSHTANIN 

Department of Integrated Water Management and Hydraulics, Russian State Agrarian University - Moscow 
Timiryazev Agricultural Academy, Moscow, RUSSIA 

 
D. Benin and V. SNEZHKO 

Department of Information Technology in the Agro-Industrial Complex,  
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, RUSSIA 

 
 

This paper presents the results of applying a new iterative method to linear and nonlinear fractional partial 
differential equations in fluid mechanics. A numerical analysis was performed to find an exact solution of the 
fractional wave equation and fractional Burgers’ equation, as well as an approximate solution of fractional KdV 
equation and fractional Boussinesq equation. Fractional derivatives of the order 𝛼 are described using Caputo's 
definition with 0 1< α ≤  or 1 2< α ≤ . A comparative analysis of the results obtained using a new iterative method 
with those obtained by the Adomian decomposition method showed the first method to be more efficient and 
simple, providing accurate results in fewer computational operations. Given its flexibility and ability to solve 
nonlinear equations, the iterative method can be used to solve more complex linear and nonlinear fractional partial 
differential equations. 
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1. Introduction  
 

Fractional partial differential equations (FPDEs) are useful tools to model many physical phenomena 
such as nonlinear seismic oscillations, hydrodynamic movement, decay laws, diffusion processes, 
electrostatics, electrodynamics, elasticity [1-4]. For example, FPDEs have been used to model filtration flow 
in a porous medium [5]. Solving FPDEs is quite a complicated process, which requires highly complex 
mathematical calculations and solution methods. Most modern computer programs are not suitable or require 
extra calculations to obtain accurate FPDEs solutions in terms of complex elementary functions. Therefore, an 
efficient and reliable numerical algorithm for solving such equations is highly relevant [6-8]. Furthermore, the 
interest in developing simple and accessible numerical methods in mathematics, physics and engineering has 
increased considerably in recent years. Thus, a number of works have studied and solved various FPDEs: 
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space-time fractional diffusion-wave equation [9], fractional advection dispersion equation [10], fractional telegraph 
equation [11], fractional Korteweg-de Vries (KdV) equation [12], and linear inhomogeneous FPDEs [13]. 

Fractional computation is a theory of integrals and derivatives of an arbitrary order that unites and 
generalizes concepts of integral differentiation and n-fold integration [14]. The advantage of fractional 
computational methods for modeling physical and mathematical phenomena is their nonlocality [15]. Given 
that the differential operators of integer order and integral operators of integer order are local, then the 
differential operators of fractional order and the integral operators of fractional order are non-local. It means 
that the next condition of the system is dependent not only on its present but also on all its historical conditions. 
This feature of fractional computing is an excellent tool for describing the memory and inherited properties of 
various physical and technical processes [16]. 

Series expansions are an important tool in numerical computations for quick assessments when 
calculating functions, integrals, or derivatives [17]. The expansion methods allow finding solutions to FPDEs 
through a series expansion, providing some advantages in multivariate solutions for FPDEs. One of such 
methods is the Adomian Decomposition Method (ADM) [18], which is used to provide an analytical 
approximation to linear and nonlinear tasks. This approach also provides direct and visible symbolic terms for 
analytical solutions and numerical approximations of linear and nonlinear differential equations with no 
linearization or discretization. The new iterative method (IM) is also an analytical and numerical 
approximation of solutions to linear and nonlinear tasks [19, 20]. The iterative method [21, 22] has been 
successfully applied to a variety of linear and nonlinear equations, such as algebraic equations, integral 
equations, integro-differential equations, ordinary and partial differential equations of integral and fractional 
order, and systems of equations as well. Contrary to the ADM, the IM is fairly simple to understand and easy 
to implement in various computer programs, ensuring better results [23]. The IM advantage is independence 
from rounding errors, as it requires no linearization, perturbations, sampling, and a large amount of computer 
memory. The IM presents the solution as a convergent fractional series with computable elements. This method 
calculates the coefficients of a power series using a chain of algebraic equations of one or more variables. 

The study aims to extend the application of the new iterative method for obtaining analytical solutions of 
FPDEs in fluid mechanics using as examples the wave equation, the Burgers’ equation, the KdV equation, and 
the Boussinesq equation. The results obtained with the IM are compared with those obtained with the ADM to 
confirm the efficacy and simplicity of the IM for the equations listed and other similar equations. In this work, 
FPDEs were derived from the corresponding integer-order equations by replacing the first- or second-order 
time derivative with a fractional derivative of order α  with 0 1< α ≤  or 1 2< α ≤  according to Caputo [24]. 
 
2. Methods 
 

First, the fundamental definitions and properties of fractional calculation theory shall be introduced [25]. 
Definition 1. A real function ( )f t , t 0>  is in the space ,   C Rμ μ∈ , if such a real number ( )p > μ  exists that 

( ) ( )p
1f t t f t= , where ( ) [ ],1f t C 0∈ ∞ , and is in space mCμ , when and only when ( ) ,  .mf C m Nμ∈ ∈  

Definition 2. The Riemann-Liouville fractional integral of order 0α ≥  for a function ,  f C 1μ∈ μ ≥ −  is 
defined as: 

 

  ( ) ( ) ( ) ( ) ,        ,  ,
t

1

0

1I f t t f d 0 t 0α−α = − τ τ τ α > >
Γ α     

   (2.1) 
  ( ) ( )0I f t f t= . 
 

The properties of the I α  operator are described in detail in [25, 26]. 
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 For , , , andf C 1 0 1μ∈ μ ≥ − α β ≥ γ > − , the following equations can be obtained: 
 
  ( ) ( )I I f t I f tα β α+β= , 
 
  ( ) ( )I I f t I I f tα β β α= , 
 

  ( )
( )
Γ

Γ
1

I t t
1

α γ α+γγ +
=

α + γ +
. 

 
 Definition 3. The Riemann-Liouville derivative presents certain disadvantages when it comes to 
modeling real phenomena using equations with fractional derivatives. For this purpose, a modified fractional-
differential operator Dα  following the Caputo viscous elasticity theory [24] shall be introduced, according to 
which the fractional derivative of ( )f t  is defined as: 
 

  ( ) ( ) ( ) ( ) ( ) ,
Γ

t
m 1m m

0

1D f t I D f t t f t dt
m

−α−α −α= = − τ
− α    (2.2)  

 
   for ,  , ,   m

1m 1 m m N t 0 f C−− α ≤ ∈ ∈  
 
Two basic properties will be required in this work.  
 Lemma 1. If ,  and mm 1 m m N f Cμ− < α ≤ ∈ ∈ , then  
 
  ( ) ( ) ,D I f t f tα α =   
 

  ( ) ( ) ( ) ( ) ,    .
!

m 1 k
k

k 0

tI D f t f t f 0 t 0
k

−
α α +

=
= − >  (2.3) 

 
 The Caputo fractional derivative is used here since it allows including the traditional baseline and 
boundary conditions in the problem formulation [27]. This paper considers one-dimensional linear 
inhomogeneous equations in fractional partial derivatives in fluid mechanics, where the unknown function is 
a causal function of time, converting into zero at ( )t 0< . 
 Definition 4. For m  to be the smallest integral exceeding α , the Caputo fractional time derivative of 
order 0α >  is defined as: 
 

  ( )
( ) ( ) ( )

( )

, , ,
Γ

,

, , , .

t m
m 1

m
02

2
m

m

1 t U x d m 1 m
m

UD U x t
t

U x t m m N
t

−α−

α

 ∂
 − τ τ τ − < α ≤

− α ∂τ
∂= = 

∂  ∂ α = ∈
∂



 (2.4) 

 
More information on the mathematical properties of fractional derivatives and integrals is provided in [28, 29]. 
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2.1. New iterative method 
 
 The iterative method is applicable to all kinds of differential equations outlined in [19, 20], including 
fractional-differential equations over time: 
 

  ( ) [ ] ( ) ( ), , , , , ,U x t R x U x t q x t t 0 x R
t

α

α
∂ = + > ∈
∂

  (2.5) 

 
where [ ]R x  is a differential operator in x under baseline and boundary conditions:  
 

  
( ) ( )

( )

, , ,

,    , ,

U x 0 f x 0 1

U x t 0 as x t 0

= < α ≤

→ → ∞ >
 (2.6) 

 

  

( ) ( ) ( ) ( )

( )

,
, ,  , ,

,    , ,

U x 0
U x 0 f x g x 1 2

t

U x t 0 as x t 0

∂
= = < α ≤

∂

→ → ∞ >
 (2.7) 

 
where ( )f x , ( )g x , and ,( )q x t  are continuous functions, and α  is an order parameter of the fractional time 
derivative ( )–m 1 m< α ≤ . 
 The corrective functional for Eq.(2.5) has the following form: 
 

  
( ) ( ) ( ) [ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )

,
, , , ,

,
, , ,

Γ

k
k 1 k t k

t
1 k

k k
0

U x t
U x t U x t I R x U x t q x t

t

U x1U x t t R x U x q x d
t

α
β

+ α

α
β−

α

  ∂
 = + λ − − =  ∂   

 ∂ τ
= + − τ λ τ − τ − τ τ  β ∂ 


 (2.8) 

 
where  tI β is the Riemann-Liouville fractional integral of order 1 mβ = α + −  over the variable t , and λ  is the 
Lagrange multiplier [30]. To determine λ , Eq.(2.8) shall be simplified as some approximation is necessary. 
The correction functional can be approximately expressed as follows: 
 

  ( ) ( ) ( ) ( ) [ ] ( ) ( ),
, , , ,

t m
k

k 1 k km
0

U x
U x t U x t R x U x q x d

t+

  ∂ τ
 = + λ τ − τ − τ τ   ∂  
 . (2.9) 

 
Assuming bounded variations to the nonlinear term [ ]R x U  Eq.(2.9) shall be written in the stationary form at 


kU 0δ = : 
 

  ( ) ( ) ( ) ( ) ( ),
, , ,

t m
k

k 1 k m
0

U x
U x t U x t q x d

t+

  ∂ τ
 δ = δ + δ λ τ − τ τ   ∂  
 . (2.10) 
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By solving this equation one can obtain the following Lagrange multipliers: 
 

  
  ,

,  .

1 when m 1

t when m 2

λ = − =

λ = τ − =
 (2.11) 

 
Consequently, substituting the Lagrange multiplier in (2.8), the following iteration formula for m 1=  shall be 
obtained: 
 

  ( ) ( ) ( ) [ ] ( ) ( ),
, , , , .k

k 1 k t k
U x t

U x t U x t I R x U x t q x t
t

α
α

+ α

 ∂
= + − − 

∂  
 (2.12) 

 
If m 2= , Eq.(2.8) will be as follows: 
 

  ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ),
, , , , .

Γ

t
2 k

k 1 k k
0

U x1U x t U x t t R x U x q x d
t

α
α−

+ α

 ∂ τα −= − τ − − τ − τ τ  α ∂ 
  (2.13) 

 
The iteration formula is obtained in the following form: 
 

  ( ) ( ) ( ) ( ) [ ] ( ) ( ),
, , , ,k

k 1 k t k
U x t

U x t U x t 1 I R x U x t q x t
t

α
α

+ α

 ∂
= + α − − − 

∂  
 . (2.14) 

 
The initial approximation 0U  is chosen so that the baseline and boundary conditions of the problem are 
satisfied, after which the solution ( ) ( ), lim ,kk

U x t U x t
→∞

=  by the N -th term ( ),NU x t  is approximated. To 

illustrate the basic idea of iteration, a general fractional differential equation (2.5) with partial derivatives of 
arbitrary fractional order shall be considered: 
 

  ( ) [ ] ( ) [ ] ( ) ( ), , , , , , U x t L x U x t N x U x t q x t t 0 x R
t

α

α
∂ = + + > ∈
∂

  (2.15) 

 
where [ ] ( ),L x U x t  is a linear operator on x , and [ ] ( ),N x U x t  is a nonlinear operator on x . The method is 

based on applying the operator tI α , which is inverse to the operator tDα , to both parts of Eq.(2.15) in order to 
obtain an equivalent fractional-integral equation: 
 

  ( ) ( ) [ ] ( ) [ ] ( ) ( )( ), , , , .
!

m 1 k k

tk
k 0

U tU x t 0 I L x U x t N x U x t q x t
kt

−
+ α

=

∂= + + +
∂  (2.16) 

 
2.2. Adomian Decomposition Method (ADM) 
 
 To solve Eq.(2.16), the Adomian decomposition method (ADM) shall be used and ( ),  U x t shall be 
decomposed into an infinite component series [18]: 
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( ) ( ), , ,nn 0

nn 0

U x t U x t

NU P

∞

=

∞

=

=

=




 (2.17) 

 
where Pn – Adomian polynomials. The expansion series (2.17) are substituted into both parts of Eq.(2.16): 
 

  ( ) ( ) [ ] ( ) ( ), , ,
!

m 1 k k

n t n nk
n 0 k 0 n 0 n 0

U tU x t 0 I R x U x t P q x t
kt

∞ − ∞ ∞
+ α

= = = =

 ∂= + + +  ∂  
    . (2.18) 

 
Linear and nonlinear parts of Eq.(2.18) shall be as follows: 
 

  

( ) ( ) ( )( )

( ) [ ] ( )( )

, , ,
!

, , ,        

k km 1
0 tkk 0

m 1
j 1 t j jk 0

U tU x t 0 I q x t
kt

U x t I L x U x t P j 0

− + α
=

− α
+ =

∂= +
∂

= + + ≥




 (2.19) 

 
where the Adomian polynomial nP  can be calculated for all forms of nonlinearity according to [18] by the 
formula: 
 

  
!

nn k
kk 0

n n

0

d N U1P
n d

=

λ=

 λ =  λ 
 

 . (2.20) 

 
 Using mathematical formula (2.20), the necessary number of Adomian polynomials to calculate 
numerical and explicit solutions was obtained. In the case of a given initial component 0U , the remaining 
components jU  can be determined one by one using the previous terms. The iterative method provides a 
solution in the form of a rapidly converging series that can lead to an exact solution for linear differential 
equations and an efficient highly-accurate numerical solution for nonlinear equations. 
 
3. Results 
 
3.1. Solving linear equations 
 
 The efficiency of the iterative method will be compared with the ADM on the example of two 
fractional-linear partial differential equations. The following one-dimensional linear inhomogeneous fractional 
wave equation in fluid mechanics is considered: 
 

  ( )
sin cos ,  , , 

Γ

1

x x
tD U U x t x t 0 x R 0 1
2

α+
α + = + > ∈ < α ≤

− α
  (3.1) 

 
under the initial condition: 
 
  ( ),U x 0 0= .  (3.2) 



M.Paliivets, E.Andreev, A.Bakshtanin, D.Benin and V.Snezhko 169 

 The problem is solved by using the ADM, and the first components of the solution can be written in 
the following form: 
 

  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, sin cos ,
Γ

, cos  sin ,
Γ Γ

, sin cos . 
Γ Γ

1

0

1 2 1

1

2 1 3 1

2

tU x t t x x
2

t tU x t x x
2 2 2

t tU x t x x
2 2 2 3

α+

α+ α+

α+ α+

= +
+ α

= − +
+ α + α

= − +
+ α + α

 (3.3) 

 
For a series of solutions, Eq.(3.3) can be represented in the form: 
 

  
( ) ( ) ( )

( ) ( ) ( )

, sin cos  cos
Γ Γ

 sin sin cos
Γ Γ Γ

1 1

2 1 2 1 3 1

t tU x t t x x x
2 2

t t tx x x
2 2 2 2 2 3

α+ α+

α+ α+ α+

= + − +
+ α + α

+ − + +…
+ α + α + α

 (3.4) 

 
As can be seen, there are background terms in Eq.(3.4), the reduction of which leads to the exact solution of 
Eqs. (3.1)-(3.2) in the following form: 
 
  ( ), sin .U x t t x=   (3.5) 
 
Besides, Eqs. (3.1)-(3.2) can be solved using the new iterative method and formulas (2.12)-(2.13): 
 

  ( ) ( )
, sin cos , 

Γ

1

0
tU x t t x x
2

α+
= +

+ α
  (3.6) 

 
and the initial values of Eqs (3.1) and (3.2) are equivalent to the following integral equation:  
 

  ( ) ( ) [ ], sin cos  .  
Γ

1

t x
tU x t t x x I U
2

α+
α= + −

+ α
  (3.7) 

 
 Taking into account ( ) [ ]N U  t xx I Uα= − , the initial components of the iterative solution of Eqs (3.1)-
(3.2) will be expressed as follows: 
 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, sin cos , , cos  sin ,
Γ Γ Γ

, sin cos . 
Γ Γ Γ

1 1 2 1

0 1

1 2 1 3 1

2

t t tU x t t x x U x t x x
2 2 2 2

t t tU x t x x
2 2 2 2 3

α+ α+ α+

α+ α+ α+

= + = − +
+ α + α + α

= − − +
+ α + α + α

 (3.8) 
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For a series of solutions, Eq.(3.8) can be represented as: 
 

  
( ) ( ) ( )

( ) ( ) ( )

, sin cos  cos  
Γ Γ

sin sin cos
Γ Γ Γ

1 1

2 1 2 1 3 1

t tU x t t x x x
2 2

t t tx x x
2 2 2 2 2 3

α+ α+

α+ α+ α+

= + − +
+ α + α

+ − + +…
+ α + α + α

  (3.9) 

 
 Removing the background terms of Eq.(3.9), the exact solution of Eqs (3.1)-(3.2) in the same form as 
(3.5) will be obtained. As can be seen, using two different methods results in the same solutions for the linear 
equation. 
 Considering the effectiveness of the iterative method on the example of solving a one-dimensional 
linear inhomogeneous Burgers’ equation with partial derivatives, it follows: 
 

  ( )
, , , 

Γ

2

t x xx
2tD U U U 2x 2 t 0 x R 1 2
3

−α
α + − = + − > ∈ < α ≤

− α
 (3.10) 

 
under the initial condition: 
 
  ( ), 2U x 0 x= . (3.11) 
 
Using the ADM, the first components of the solution to the equation will be written as: 
 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,
Γ Γ Γ

, , , .
Γ

2
2 2

0 1

2

2 3

t t 2tU x t x t 2x 2 U x t 2x 2
1 1 1 2

2tU x t U x t 0
1 2

α α α

α

= + + − = − − −
+ α + α + α

= − =
+ α

  (3.12) 

 
Then the exact solution of Eq.(3.10) can be written in the following form: 
 

  

( ) ( ) ( ) ( ) ( )

( ) ( )

,
Γ Γ

.
Γ Γ

2 2

2 2
2 2

t tU x t x t 2x 2 2x 2
1 1

2t 2t x t
1 2 1 2

α α

α α

= + + − − − +
+ α + α

− + = +
+ α + α

 (3.13) 

 
Applying a new iterative method to Eqs (2.12) and (2.13), the solution of Eqs (3.10)-(3.11) is equivalent to an 
integral equation: 
 

  ( ) ( ) ( ) [ ], .
Γ

2 2
t x xx

tU x t x t 2x 2 I U U
1

α
α= + + − + −

+ α
  (3.14) 
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Assuming that ( ) [ ]N U t x xxI U Uα= − − , the initial components of the iterative solution of Eqs (3.10)-(3.11) is 
as follows: 
 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,
Γ Γ Γ

, ,  , .
Γ

2
2 2

0 1

2

2 3

t t 2tU x t x t 2x 2 U x t 2x 2
1 1 1 2

2tU x t U x t 0
1 2

α α α

α

= + + − = − − −
+ α + α + α

= − =
+ α

 (3.15) 

 
As can be seen, Eq.(3.15) is identical to Eq.(3.12), and if expressing the solution in a general form, the exact 
solution of Eqs (3.10)-(3.11) will be as (3.13), which indicates that both methods are simple and practical. 
 
3.2. Solution of nonlinear equations 
 
 Only approximate solutions can be obtained for solving nonlinear equations since no exact solution 
exists. The two techniques were compared to obtain approximate solutions of the nonlinear KdV equation and 
the Boussinesq time-fractional partial differential equation. 
 Considering the nonlinear KdV equation in the form: 
 
  , , , t x xxxD U 6UU U 0 t 0 x R 1 2α + + = > ∈ < α ≤ ,  (3.16) 
 
under the initial condition: 
 

  ( ), sech21 xU x 0
2 2

 =  
 

. (3.17) 

 
Using the ADM, the approximate solution of Eqs (3.16)-(3.17) will be as follows: 
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
,  

Γ Γ Γ

2 3

0 1 2 3
t t tU x t f x f x f x f x
1 1 2 1 3

α α α
= + + + +…

+ α + α + α
  (3.18) 

 
where  

  ( ) sech ,2
0

1 xf x
2 2

 =  
 

      ( ) ' ''' ,1 0 0 0f x 6 f f f= − −   

 

  ( ) ' ' ''' ,2 1 0 0 1 1f x 6 f f 6 f f f= − − −       ( ) ( )
( )

' ' ' '''Γ
.

Γ α
3 2 0 1 1 0 2 22

2 1
f x 6 f f 6 f f 6 f f f

1

α +
= − − − − −

+
  

 
 Using the new iterative method with formulas (2.12) and (2.13), the solution of Eqs (3.16)-(3.17) is 
equivalent to an integral equation: 
 

  ( ) [ ], sech .2
t x xxx

1 xU x t I 6UU U
2 2

α = − + 
 

  (3.19) 
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Taking into account ( ) [ ]N U t x xxxI 6UU Uα= − + , the initial components of the iterative solution of the 
equations will be expressed as: 
 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )
( ) ( )

'

, , , ,
Γ

Γ
, . 

Γ Γ ΓΓ α

0 0 1 0 1

2 3

2 0 1 2 1 1 2

tU x t f x U x t f x f x
1

2 1t t tU x t f x f x f x 66 f f
1 1 2 1 31

α

α α α

= = +
+ α

α +
= + + −

+ α + α + α+

 (3.20) 

 
Then, approximate solution of Eqs (3.16) can be written in a general form, which corresponds to formula (3.18) 
obtained by the ADM. It follows that both methods provide the same approximate solution of the KdV equation. 
 Considering the nonlinear Boussinesq equation with partial derivatives over time, it follows: 
 
  ( ) ( ) , , , 2 2

t xxxxxx
D U U U 0 t 0 x R 1 2α + + = > ∈ < α ≤ , (3.21) 

 
under the initial condition: 
 

  ( ) ( ), sech , , sinh2
t

4 x 1 xU x 0 U x 0
3 4 3 2

   = = −   
   

.  (3.22) 

 
Using the ADM, the components of the approximate solution will be the following: 
 

  

( )

( ) ( ) ( )

, sech sinh ,

, , ,

2
0

j 1 j jxx xxxx

4 x 1 xU x t t
3 4 3 2

U x t I P P j 0α
+

   = +   
   

 = − − ≥ 

  (3.23) 

 
where Pj - the Adomian polynomials of the nonlinearity 2U , which are calculated by the formulas:  
 
  ( ), ,2

0 0P x t U=       ( ), ,1 0 1P x t 2U U=       ( ), ,2
2 0 2 1P x t 2U U U= +  

    (3.24) 
  ( ), ,3 0 3 1 2P x t 2U U 2U U= +       ( ) ., 2

4 0 4 1 3 2P x t 2U U 2U U U= + +  
 
An approximate fourth-order solution for Eq.(3.21) is as follows: 
 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, sech sinh cosh
Γ

sinh cosh
Γ Γ

sinh cosh sinh .
Γ Γ Γ

2

1 2

2 3

2 1 3 3 1

4 5 6

4 x 1 x 1 x tU x t t
3 4 3 2 2 3 2 1

1 x t 1 x t
2 2 2 1 22 3 2 3

1 x t 1 x t 1 x t
2 2 2 2 1 3 2 2 32 3 2 3 2 3

α

α+ α

α+ α α+

     = + + +      + α     

   − + +   + α + α   

     − + −     + α + α + α     

 (3.25) 
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According to the iterative method and Eq.(2.12), the iterative formula for the fractional time 
 Boussinesq equation is as follows: 
 

  ( ) ( ) ( ), sech sinh  ( ) .2 2 2
t xxxxxx

4 x 1 xU x t t 1 I U U
3 4 3 2

α     = + − α − +         
  (3.26) 

 

Assuming that ( ) ( ) ( )N U ( )2 2
t xxxxxx

1 I U Uα  = − α − +  
, a fourth-order approximate solution for the time-

fractional equation can be obtained: 
 

  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, sech sinh cosh
Γ

sinh cosh
Γ Γ

sinh cosh sinh .
Γ Γ Γ

2

1 2

2 3

2 1 3 3 1

4 5 6

4 x 1 x 1 x tU x t t
3 4 3 2 2 3 2 1

1 x t 1 x t
2 2 2 1 22 3 2 3

1 x t 1 x t 1 x t
2 2 2 2 1 3 2 2 32 3 2 3 2 3

α

α+ α

α+ α α+

     = + + +      + α     

   − + +   + α + α   

     − + −     + α + α + α     

 (3.27) 

 
Hence, at 2α = , the approximate solution can be written as: 
 

  
( ), cosh

! !

sinh ,  
! !

2 4

2 4

3 5

3 5

2 x 1 t 1 tU x t 1 1
3 2 2 42 2

2 x 1 1 t 1 tt
3 2 2 3 52 2

   = + + +… − +        
  − + + +…  

    

 (3.28) 

 
which converges to the exact solution of Eq.(3.21) when 2α = : 
 

  ( ) ( ), sinh .24 1U x t x t
3 4

 = − 
 

   (3.29) 

 
As can be seen from the results for nonlinear equations, the iterative method has evident advantages due to the 
need to calculate the Adomian polynomials, which is much easier and more convenient for the calculation 
procedure compared to ADM. 
 
4. Discussion 
 
 Similar results were obtained also in other studies. In [30], the authors used the IM to solve linear space 
FPDEs with given constraint conditions based on the generalized Taylor series formula. The results of analysis and 
testing showed that the proposed method is highly effective and accurate in solving equations with different 
constraint conditions. Numerical and graphical results demonstrate high reliability and efficiency of the proposed 
IM algorithm. In another study [31], the authors analyzed the efficiency of a new IM free of the second derivative 
to solve nonlinear equations for a photovoltaic cell. The new IM represents an improvement in the convergence of 
Newton's algorithm to obtain minimum iterations. The results showed that the errors obtained are absolute values, 
and meaningful approximations using Newton's algorithm require ten iterations of estimates, whereas the new IM 
requires only eight estimates. This indicates that the first IM requires nine evaluations, while the new IM requires 
seven evaluations of the function and one of its first derivatives with good efficiency. 
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 Furthermore, the use of IM shows good results for solving the nonlinear Fisher reaction-diffusion 
equation [32]. The authors introduced the modified equation solution using the fixed point theory and IM. The 
results of the geometrical construction of various iterative processes for the solution of scalar nonlinear 
equation [33] indicated that the geometrical interpretation of the third-order Halley and Euler methods is 
efficient in the case when the calculation of the second derivative is not time-consuming. 
 It follows from the above results that the iterative method is a simple and reliable tool for solving linear 
and nonlinear FPDEs, which is well consistent with the results of this work. As can be seen, the iterative 
method can be applied not only in fluid mechanics but also in other areas of physics and engineering, requiring 
fewer calculations and lower error rates in calculus. 
 
5. Conclusions 
 
 This paper evaluates the effectiveness of a novel iterative method for the analytical solution of FPDEs 
in fluid mechanics. Using the example of wave equations, the Burgers equation, the KdV equation, and the 
Boussinesq equation, it was shown that the iterative method is well consistent with the results obtained using 
the Adomian expansion method. Besides, this method is simpler and more reliable as it does not require the 
calculation of Adomian polynomials for nonlinear tasks. This paper presents only a part of the iterative method 
applicability. In future studies, this method is expected to be used to solve more complex linear and nonlinear 
tasks in the fractional calculus of fluid mechanics. 
 
Nomenclature 
 
 ADM – Adomian decomposition method  
 Cμ , mCμ  – real spaces, where Rμ ∈ subsets 

 Dα  – modified fractional-differential operator of order α 
 ( )f x  – continuous function 
 ( )f t , ( ),U x t  –  real functions 
 FPDE – fractional partial differential equation 
 ( )g x  – continuous function 

  tIβ  – the Riemann-Liouville fractional integral over the variable t,  

 I α  – the Riemann-Liouville fractional integral of order α 
 IM – iterative method 
 k , t   – indexes indicating a definite value of a function from the set (1, 2, …, m-1), m N∈  
 KdV – the Korteweg–De Vries equation is a mathematical model of waves on shallow water surfaces. 
 [ ]L x  –  linear operator on x 
 [ ]N x  –  nonlinear operator on x 
 Pj  – Adomian polynomials 
 ( ),q x t  – continuous function 
 [ ]R x  – a differential operator in x under baseline 
 ,  ,  ,  mα β γ  – order parameters of fractional derivative, where m N∈  
 Γ  – the gamma function with properties ( )! Γ   k k 1 for k N= + ∈   
 λ  – the Lagrange multiplier 
 
Appendix 
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